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COMMENT

The paraliel dynamics of a dilute symmetric Hebb-rule network

T L H Watkin and D Sherrington

Department of Theoretical Physics, Oxford University, 1 Keble Road, Oxford QX1 3NP,
Ux

Received 24 May 1991

Abstract. We find that the dynamics of a dilute network of symmetrzc Hebb-rule synapses
with parailel evolution, the modei considered by Patnich and Zagrebnov, are considerably
more complicated than that paper predicted The number of parameters is not constant
but equal to the square of the number of time steps taken and they are generated by exact
but increasingly comphicated relations. A rephca-symmetric calculation of long-term
behaviour gives an estimate of a, = 1 26. The calculattons also desenbe paraliel evolution
of fully connected spin glasses.

During the past few years there has been considerable interest in the dynamics of
neurzal network models with very low asymmeiric connectivity, due to the remarkable
discovery [1] that the full evolotion in time of these systems can be calculated exactiy.

This result is in strong contrast to that for fully connected networks which have, in
general, exiremely complicated dynamics {2, 3] governed by detailed correlations. Here
we show (in contradiction to the prediciions of [4]) that a dilute but symmetric network
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examined using the techmques of thermodyﬂarmcs.

To be more specific, [1] considered a dilute network of N Ising spins {5, = %1}
with r=1,.._, N, which stores p patterns {#{'=>1}with:=1,... , Nandp=1,. ,p,
where each £ is randomly chosen to be +1 or ~1 with equal probability. Neurons 1
and y (i #j) are connected by bonds

?
Z: EVEr ey {1

f‘.xll—-

where each ¢, is drawn independently from the distnibution

C C
Frob(c,j=x)=(1—§) 5(x)+-]g5€x—1) I {2)

which implies that, on average, every neuron receives inpuls from O other neurons
and sends ouiputs to a difierent selection of C neurons,

The network evolves in parailel for 7 timesteps, so that at each of thesteps £ =1,..., 7
every s,(f} is updated according to

1
Prob(s,—{t—{—i):ﬂ}=5(iﬁ:ianb(,3T ,”(t))) (3)
B is the inverse temperature.
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To recall pattern 1 we could initialize the network by randomly and independently
choosing each s,(¢) to be +£] with probabifities g and (1-g) respectively. Thus the
iniulal overlap of the network with the pattern 1 m(0) = 2g ~ I, whete

1 N
m(0=(£ % gain). )

For i =0 the brackets refer to the average over the initial setting of the network, but
for t> 0 it also includes the average over {¢,}, {£"} and the thermal noise of (3)

For C'«In N the network has a local tree structure so that aimost all pairs of
neurens have entirely different sets of ancestors, and correlations in noise may be
neglected. 1] showed that this gives the simple recursion relation:

m(t-!-l)ﬁj Dz tanh[ B(m(#) + 2v/&)] (5)
where
AP
Dz=mexp( 2) (6)

and a=p/C. The limit of m(s) as - 00 can only be noi-zerc if o < (2/#)=10.634,
which is the “critical capacity’, ., of the network; m goes continttouslvto zero as ¢ - .

In the work of [ 4], however, the distribution of the bonds is fundamentally different.
The {¢,} are drawn from the disiribution

C C
Pmb(c,fzx)=(1—ﬁ) 6(M+§5(?~‘“ 1 i<j -

Cp = Gy

MNow all bonds are symmetric: the C neurons from which ¢ receives inputs are alse
the C to which 7 sends outputs. The network is locally (over a few steps [tom any
site} & Cayley tree, as in figure 1 where the neurons connected to i have been labelled
by variable j. {[4] uses a trivially different definition of C and «: C™=(/2 and
e¥l=a/2)

The exact steady-state of this sysfem with asynchronous dynamics {spins updated
one at a time accorcding to (3) mstead of all at once), has already been derived [5]

Figura 1. The Cayley tree of neural mnteractions Neuwrons connected to 1 are labelled by 1
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vsing a thermodynamic technique which requires onty C < N (a very much weaker
constraint than €« ln N and one that renders the model susceptible to numerical
simulation). It too shows a continuous transition to m =0, but at a cnitical capacity
of a.=1 exactly.

To solve the parallel evolution problem Patrick and Zagrebnov [4] assumed that
noise on the branches of the Cayley tree connected to a given node, i, remains
uncorrelated, which gives an evolution with just two order parameters. However, as
noted in [1], dilute systems with symmetnc bonds are considerably more complicated
than the asymmetric versions. The noise on bond § (figure 1} is equal to

T ety @)
nE)
which influences the effect 5,(0) has upon 5,(1}, which in turn influences 5,(2), interfering
with the noise of the jth branch, to produce an effect at 5,(3). Reference [4] also
neglected, for 1 = 3, the effects of ‘echoes’ withuin the branches, 5,{2) wouid be correlated
with 5,(0) even if neuron 1 were absent

Correcting the analysis of [4], would be cumbersome and highly prone w errors.
A cleaner and more rehable alternative is to nse the generating function introduced
by [3] and generahzed in [6] into a Markov chain (an equivalent function was used

in {7D):

Y({h(!)}}=<;1;}')|:! 1115 (Htaﬂh( (”‘}Z = )))

xexp(3E ()T as,(z))J) ©)

: ¢ : {4 Hs (00

where the trace is over all N spins at all times. This function has the property that
d

The avarzas avar I L con now he mann FIral
= i~ manner of Loy alf
s hav

order parameter.

m{t) t=1,...,7

/1 _
‘1(11,32)=\§L5={51_1)&(1‘2_1)> fn<h<r {10)
r(t, ta) O<h<<r

The values of the order parameters may be expressed as
m{1) = g{s(t}s(ON ++ (g~ 1){s(2}5{0)).-
ir(r, B =aglxs{e)s(t, - 1D+ e (l—gix" st st~ 1)), {11)
gity, )= g{s{t; —1)s{t— 1))~ + (1 — g }s{s;, — Vs, — 1))~

where the averages are with respect to ‘one-particle’ pariition functions:

. I rm - o ““l‘l
=5 Tt j I ar’ j_m———(lﬂanh(ﬁﬁ’})

(0 J_wim 27 2
r=0, r

xexp( Z x'a'Ei L x(Ns(0m{i— D —a T gk, L)x"1x5s(8)s(t;)

tretty

~-i Y A&, B)x *5(&*1)5{;1—-1)—-—2(3:’)2} {12)

:1>:2
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Fo1 simplicity we state the results of these equations for zero temperature (8 - ).
Afier one step there is only one parameter-

m(1) =2 erf(m(0)/vz)) (13)

where

erf(x)= [

The new parameters after two steps are’

g(1, 2y=m{(0)m(1)

"2, 1) = \/‘ (m(m)) (14)

m(2)= T (1+om(®) erf(i"il_}%ﬁﬂ)

So far these results are in accordance with those of [1] {with a trivial difference in the
definition of the ervor function). However, for t>> 3 the results differ. After three time
steps the new order parameters are

q(1,3)=u§=(1+o'm{0))erf(£g’*l)\;gjﬂ~——i-(l—)} (15)
2
M3 =% 5 (1+om(©) exp(—%i’—“‘"—"——«'”-@) (16)
29 oo 2a

#(3,1)=0 (17

-g TmOl (e T )

=T B e da
xexp( AH)[l-}-a {(M)] B (18}

I Ye(1+(g(1,3)%

g(2, 3) is also non-zero, but does not enter the formula for »2(3). Equations (13)-(17)
are corrected for non-zero temperature by the sabstitutions:

2 o ‘)t )‘2
exp(——ﬁ;) _}J‘ %tanh(ﬁ(;\—!—x))z\ exp[-:;;.]

(19
x ® dA E
erf(\/—g) - Jlm oW tanh{B(A+Xx)) exp (__Ec;)

with a similar complication of the formula for m{3).

Equaticns of a similar form to (11) and (12) describe the dynamics of a fully
connected Hebb network {3] at zero temperature, but with many mere order parameters
related in even more complicated ways.

Figure 2 plots m{1), m(2) and m(3) agaionst the wital overlap m(0) for o =03
and zero termperatuie. M(3) is the result for the third overlap if correlations between
the branches of the Cayley tree are neglected. The ‘experimental’ vaiues are the averages
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Figore 2. A companson of theory and the resulis of 2 numerical simulation. The overlap
of the network with the pattern at timesteps 1, 2 and 3 s shown against che wnitial overlap
m{0) #i(3) is the prediction for m{3)} neglecting inter-branch correlations, Expenmental
pornts are the resuiis of five complsiely independent simulations with € =50 and N = 5000
and the eiror bars mark the standard deviation.

of five completely independent simulations with € =50 and N = 5000, which provide
very good sepport for our theoretrcal predictions. As the number of steps increases,
however, the order parameters are relaied in ever more complicated ways and no
simple, general recursion relation exists.

To derive the critical capacity of this network we resort o a thermodynamic
calculation wsing the hamiltonian appropriate to parallel updating [8].

‘ H= —%Et m(z cesh(ﬁ (ng.ﬁ%))) (20)

giving a partition function

Z=Trexpl—BH).

is}
The free energy averaged over the network disorder,
F..={nZ)J,

is obtained using the method of ‘repiicas’ (reviewed in [9]), which introduces » replicas
of the system (labelled by v=1,..., n). Taking N snd C to be large, with C< },.
and with the conventional assumption of ‘replica symmetry’, gives the average free



5432 T L H Watkin and D Sherrington

energy F as a function of six order perameters.
FJ\(m’ '".1’ q’ Q’ 6’ 8)

=mrﬁ—,6(q—1)(Q—§) +“7‘B(52~ez)méj Dy Dz

yK

Xl“[”texp(dﬁ(ﬁz+zJ6))gcosh(ﬁ(Uaﬁ(;~6)+ sz:/,%_m) ]
(

where

Only two of ihese parameiers have an obvious physical interpretation.
= {gs,)
15 the average overlap of any replica with the patiern, and
g={8,%,) yEy

is the overiap between any pair of replicas. As the storage capacity «— 0, the fTee
energy tends fo that found in [8] for the far simpler case of low-loading networks;
only the parameiers mt and m are of significdnce in this limit, and these have been
shown to be identical. i )

The order parameters for any temperature and o may be found from the stationary
points of F, but the search in six dimensions is difficult numerically, As g -0 the
equation remains physical since we expect both (1 —ag)(Q—(a/2}) and B(s—8) to
remain of order 1. In this litmt, where the critical « is expected to lie, g=>1 and
Q-+ (a/2), bui even here the free energy landscape is difficalt to compute and rich in
spurious minima. Stationary points, however, seem to have 8{s — &) small, and using
the ansatz that it is zero gives an analytic result for a.=(4/w)=1.24, double the
replica-symmetric answer for asynchronous updating, which we take as a geod estimare
of the true vaiue. It is in reasonable agreement with computer simulavons using € =50
and IV =5000.

A mapping exists between this problem and that of a fully-conaected spin gtass
with symmetric bonds {J, = J,} distributed as for the sx model [10%:

NU=d
NIUY-G1=0 <)

with the same updating rule (3), but operating at inverse temperature B°<. Egquations
(13)-(21), with the change of variables o = (J%/ f3) and B - (J,8°), descobe this spin
glass exactly, in the N - o0 limit. m now represents the overall magnetization of the
system. Equations similar to (11) and {12) were in fact derived for the spin glass in
{31, but resiricted to zero temperature and with the very considerable simplification
of Jp=0, which makes many of the order parameters zere and simplifes the aigebra
aliowing further steps to be taken mote easiiy. Jy=0 is not appropriate for a neural
network because final states have no comrelation with stored patterns, no dia {3]
analyse the equilibrivm behaviour of the system. The same mapping between 2 fully
connected wpin gless and a dilute Hebb network was found in {53 for the case of
asyachronous updating.

(22}
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This mudel is worthy of further analysis. Even at zero temperature limit cycles (in
which the whole network alternates between two states) may exist for the Hebb netwozk,
and do for the spin glass. What meaning can we then attach to g 1, all the replicas
becoming exactly correlatea? Nor is it clear if just six parameters can represent the
equilibrium behaviour of & very large number of dynamical order parameters, nor
whether replica symmetry is broken [9]. A thorough investigation of the equilibrium
behaviour of paraliel updating systems is currently in preparation.

In summary, even in 2 highly diluie network symmeiric bonds canse non-trivial
correlations to develop. In the large N limit these can be treated by analysis of Markov
chain relations, vielding results which are exact for c« N but become increasingly
tedious to evaluate. Long-term behaviour may be predicted by thermodynamics, with
an escdmate of critical capacity of a.=1.24.

Note added in procf. After seeing our results Dr Patnick and Dr Zagrebnov were able to denve our result
for m(3) by extendmg and correcting their previous method. Their caleulation will be presented elsewhere.
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