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Received 24 May 1991 

Abstmrt We find that the dynamcs ofa  dilute network 0fs)mmetr.c Hebb-mle synapses 
with paraiiei evolution. the model considered by haincl and Zagrebnoi, are considerabiy 
more complicated than that paper predicted The number of parameters is not ccnstant 
but equal to the qua-e ofthe number oiome aieps taken and they are generated by eraci 
but increasingly complicated ielanons. A replm.-symmelnc calculation of long-Cem 
behaviour aves m estimate of mr= 126. "he  calmlations also desenbe parallel evolution 
of fully comectsd spin glasses. 

During the past few years there has been considerable interest in the dynamics of 
neural network models with very low asymmetric connectivity, due to the remarkable 
discovery [:j that the full evolution in t m e  of these systems can be calculated exactly. 
This result is in strong contrast to that for fully connected networks which have, in 
general, extremely complicated dynamics [2,3] govemed by detai!ed correiations. Here 
we show (in contradiction to tbe predictions of [4]) that a dilure hut symmetric network 
a!ro ha: coq!i.-.'ed (though diEerest) dynamics, who:: !ozg-term behaviour may be 
examined using the techniques of thermodynamics. 

To be more specific. [IJ considered a dilute network of W king s p i n s  {sz = + 3 }  
with I = 1, . . . , N, which stores p pat:erns (6: = i-1) with I - 1 , .  . . , N and p = I. . , p ,  
where each 6: is randomly chosen to be +1 or -1 with equal probability. Neurons I 

and J (i # j )  are connected by bonds 

1 P  
J.=$ z f:t;;"c, (1) 

P = l  

where each cy is drawn independently fram the distnbution 

. . ~ < L . , .  _L.. w n i ~ r i  inipiirs ~iiai, on average, every neuron receives inpuis from C oiher neurons 
and sends outpnis to a difierenz selection of C neurons. 

Thenetworkevolvesinparallelfor.rtimesleps,sothatateachofthestepsr= 1 , .  . . , T 

every s , ( r )  is updated according to 

Prob;s,(r + 1)  = 2 1 )  (3) 2 

6 is the inverse temperature. 
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To recall pattern 1 we comld initialize the network by randomly and independently 
choosing each s , ( f )  to be *S: with prohabiiitks g and (1-g) respectiveiy. Thus the 
initial overlap of the network with the pattern is m(0) = I g - l ,  whqe 

For t = O  the brackets refer to the average ovei the initial setting of the network, but 
for f > 0 it also includes the average over {cy}, {g‘} and the thermal noise of (3) 

For C << In N the network has a local tree structure so that almost all pairs of 
neurons have entirely different sets of ancestors, and correlations in noise may be 
neglected. [i] showed that this gives the simple recursion relation: 

Dz tanh[p(m( t )  + z&)] ( 5 )  

where 

and a =PIC. The limit of m ( f )  as f J as can only be noi:-zero if a < (2 /s)  = 0.634, 
which is the ‘critical capacity’, (I~, of the network; m goes continuous1:rto zero as (I + a,. 

In the work of [4], however, the d!sttibntion of the bonds is fundamentally different. 
The {c,} are drawn from the disznbution 

cq = c,, . 
Now all bonds are symmetric: the C neurons from which i receives inputs are also 
the C to which I seiids outputs. The network is locally (over a iew steps From any 
site) a Cayley tree, as in figure 1 where the neurons connected to i have been labelled 
by variable j .  ([4] uses a trivially difEerent definition of C and a: Cr4’=C/2 and 

The exact steady-state of this system with asynchronous dynamics (spins updated 
one at a time according to (3) instead of all at once). has already been derived [ 5 ]  

L P ’  = a/Z.) 



Parallel dynamics of a Hebb-mle network 5429 

csing a thermodynamic technique which requires only C<< IV (a very much weaker 
cons~raint than C << In N and one thar rcnders :3e model susceptible to numerical 
simulation). It too shows a continuous transition to m =0, hut at a cntical capacity 
of me = 1 exactly. 

To solve the parallel evolution problem Patrick and Zagrebnov [41 assumed that 
noise on the branches of the Cayley tree connected to a given node, i, remains 
uncor;elated, which gives an evolution with just two order parameters. However, as 
noted in [I], dilute systems with synmetnc bonds are considerably more complicated 
than the asymmetric versions. The noise on bond 

t!Yr (8) 

whichinfluencesthe effects,(O) has upon s,(l!, whichin turninfluences s,.(2), interfering 
with the noise of :he jth branch, to Droduce an effect at s,(3). Reference [4] also 
neglected, for t 2 3, the effects of 'echoes' within the branches, s,(2) wouid be correlated 
with s;(O) even if neuron I were abssnt. 

Correcting the analysis of [$I, would he cumbersome 2nd highip prone to errors. 
A cleaner and more reliable alternative is to use the generatkg funciion introduced 
by [3] and generalized in [6] into a Markov chain (an equivalent function was used 
in f71): 

(figure 1) is equal to 

*el 

where the trace is over all N spins at all times. This function has the property that 
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Poi simplicity we state the results of these equations for zero temperature ( p  +a). 
AFcer one step there is only one parameter- 

m(l)=2erf(m(O)/&)) (13) 

where 

erf(x) = I” Dz, 
.IO 

The new parameters after two steps are’ 

So far these results are in accordance with those of [ l ]  (with a trivial difference in the 
definition of ihe evor function). However, for t>  3 the results diger. After three time 
steps the nzw order parame?erj are 

(3, I )  = 0 (17) 

4(2 ,3 )  is also non-zero, but does not enter the formula for 4 3 ) .  Equations (13)-(17) 
are corrected for non-zero temperature by the sdbstitutions: 

with a similar complica‘jon of the formula for m(3).  
Equatio3s of a similar form to (11) and (12) describe the dynamics of a fully 

connected Hebb networh- [3 J at zero temperature, but with many more order parameters 
related in even more complicated ways. 

Figure 2 piots m ( l ) ,  m(2) and m ( 3 )  against the initial overlap m(0) for f f=O.3 
and zero remperatuie. 6 ( 3 )  is the result for the third overlap if correlations between 
the branches of the Cayley tree are neglected. The ‘experimental’ values are the averages 
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Figure 2. -4 comparison oftheory and the resulu of a numerical eimulaliun. The overlap 
of rhe nen~ark w t h  the pattem at itmesteps 1,2 and 3 zs shown agains: the initizl oreclhp 
4 0 )  A(3) is the predicuan for m(3) neg.!eclinp mter-branch corre!atmn;-. Expenmenla! 
poms are lha results of five completely independent simulations with C = 50 and N = 5000 
and the emor bars mark the s:andard deviation. 

of five completely independent simulations with C = 50  and^ N = 5000, which piovide 
very good support for our rheoreiiczl predictions. As the number of jleps increases, 
however, the order paranxters a?e reiaisd is wer more complicated ways and no 
simple, generai recursion relation exists. 

To derive ths critical capacity of this network we resort to a thermodynannc 
calculation using the hamiltonian appmpnate to pardlei updating [SI. 

giving a partition function 

.z=Trexp(-pN). 
i'.) 

The free eneigy avemged over the network disorder, 

F,.=(ln Z)J, 

is obtained using the me:hod of 'repiicas' (zeviewrd in [9]), which introduces n repiicas 
of the system (labelkd by y = I, . . . , n). Tzlring N- sad C to be large, with Cc< N, 
and wit$ tins convenrioilai assumpion of .iepiica symmetry', gives the average free 
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energy F as a function of six order parameters 

F A m ,  *, 4. Q, 8, €1 

(:I) 
where 

Only two of these parameters have an obvioJs physical interpretation. 

m = (k) 

4 =(sySy.)  Y f Y '  

is the average overlap of any replica with the pattern, and 

is the overlap between any pair of replicas. As the storage capacity 01 +O, the free 
energy tends to that found in [SI for the far simpler case of low-loading networks, 
only the parameters and m sre of significince in this limit, and these have been 
shown to he identica!. 

The order parameters for any temperature and U may be found from the stationary 
points of F, bnt the search in six dimensions is difficult numerically. As p + on the 
equation remains physical since we expect both p(l-q)(Q-(u/2)) and P ( 6 - 6 )  to 
remain of order 1. In this limit, where the critical n is expected to lie, q+ 1 and 
Q+ (u/2), hut even here the free energy landscape is difficult to compute and rich in 
spurious minima. Stationary points, however, seem to have B ( E  - 6 )  small, and using 
the ansatz that it is zero gives an analytic resuit for aC=(4/1r)=1.24, double the 
replica-symmetric answer for asynchronous updating, which we take as a $cod estimate 
ofthe true value. It is in reasonabie agreement with compute: simuia:ions using C = 50 
and N = 5000. 

A mapping exists between this problem and that of a fully-connected spin glass 
with symmetric bonds (4, = j T J  distributed as for the SIC model [ lOI :  

(22) 

with the same updating rule (3), bct operating a? inverse temperature pSK. Equations 
(13)-(:l);.vith the change of variables a- . (J ' /J: )  and p->(J&'), describe this spin 
glass exactly, in the N + m  limit. m now represents the overall magnetization ofthe 
system. Equations similar to (11)  and (12) were in fact derived for the spin &ss in 
133, but restricted CO zero temperaiuie and vith the very considerabie simplification 
of Jo = 0, which makes many of the order parameters zerc and simplifier the aiwbra 
aliowing further steps to be takeu m06e easi;y. Jb = 0 is got appropriate for a neural 
network because final states have no correlation with stored pattsrns, not die i31 
analyse the equilibrium behawour of the system. The same mapping between a fully 
connected >pin glass and a dilute Nebb network was found in fs] Cor the case of 
asyncitronous updating. 
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This m+dei is worthy of further analysis. Even at zero temperature limit cycles (in 
which the whole network alternates between two states) may exist forthe Nebb network, 
and do for the spin glass. What meaning can we then attach to q + 1, all the replicas 
becoming exactiy correlated? Nor is it clear if just six parameters can represen: the 
equilibrium behaviour of a very large number of dynamical order parameters, nor 
whether replica symmetry is broken [9]. A thorough investigation of the equilibrium 
behaviour of parallel updating systems is currently in preparation. 

In summary, even in a highly dilute network symmetric bonds cause non-triviai 
correlations to develop. In the large N limit these can be treated by analysis of Markov 
chain relations, yielding results which are exact for c<< N hut become increasingly 
tedious to evaiua?e. Long-term behaviour may be predicted by thermodynamics, with 
an escimate of critical capacity of %= 1.24. 

NOQ added in pronj After seeing our results Dr Patnck and Dr Zagrebnov were able to derive our result 
far m(3) by extending and correcting their previous mehod. mea calculation will be presented elsewhere. 
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